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The constitutive equation of a concentrated suspension of spherical particles in 
a Newtonian medium is derived. To this end the method of local volume 
averaging is employed. To calculate the contribution of the particles to the 
stress tensor it is assumed that the stress generated in the interstitial holes 
between the particles is negligible compared to the stress generated in the 
narrow gaps separating the particles. The use of the resulting expression is 
demonstrated with two examples on a cubical arrangement of particles: pure 
shear and simple shear. Furthermore, the validity of the lubrication approxima- 
tion employed in this work is checked against the results derived by Nunan and 
Keller for periodic suspensions. 

KEY WORDS: Concentrated suspension; volume averaging; viscosity; stress 
tensor; lubrication approximation. 

1. I N T R O D U C T I O N  

Many  models  and empir ical  express ions  have been developed to describe 
the re la t ionship  between the par t ic le  concen t ra t ion  and the macroscop ic  
mechanica l  proper t ies  of suspensions.  The  most  successful theories are 
l imited to di lute  suspensions  of  part icles in a Newton ian  medium,  t~ In this 

concen t ra t ion  regime we do  not  have to take the h y d r o d y n a m i c  interac-  
t ions between the part icles into account .  At higher concen t ra t ions  mul t ip le-  
par t ic le  in terac t ions  become impor tan t .  This p rob lem is very hard  to solve. 

At even higher  conccnt ra t ions ,  where the part icles  near ly  touch each other,  
we still have mul t ip le-par t ic le  interact ions,  but  the h y d r o d y n a m i c  screening 
will be effective enough to al low us to assume that  the in terac t ions  are  
pairwise addit ive.  (The in terac t ion  of  a reference part ic le  with one of its 
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neighbors is not disturbed by the interactions of the reference particle with 
the other neighboring particles.} A successful theory in the high-concentra- 
tion regime is that developed by Frankel and AcrivosJ 21 The basic idea 
of this theory is to equate the ratio between the energy dissipation in 
the suspension and in the homogeneous fluid to the relative viscosity of the 
suspension. To calculate the energy dissipation in the suspension, the 
packing geometry must be specified. Furthermore, in this theory it is 
assumed that the viscous dissipation of energy occurs primarily in the 
narrow gaps between the particles. 

In this paper instead of considering the energy dissipation, an expres- 
sion for the stress tensor of a concentrated suspension will be derived. In 
Section 3 this expression will be used to calculate the same situation as the 
one considered by Frankel and Acrivos; this is the case of a pure shearing 
deformation of a cubic configuration of particles. The advantage of using 
the stress tensor instead of the energy dissipation is that it provides more 
information. This will be demonstrated in Section 4, where the situation 
of simple shear flow will be considered. In Section 5 the lubrication 
approximation, which is used throughout this paper to calculate the 
hydrodynamic forces, will be checked against the theoretical results 
obtained by Nunan and Keller ~3~ for periodic suspensions. 

2. T H E  V O L U M E - A V E R A G E D  S T R E S S  T E N S O R  

The macroscopic properties of a suspension are dependent only on the 
microscopic structure of the system in a statistical sense. If a length scale 
L is present which is small compared to the macroscopic dimensions of the 
system, but at the same time is large with respect to the characteristic 
length scale of the microstructure, it is possible to use the method of local 
volume averaging ~4~ to obtain the macroscopic properties of a suspension. 
The volume-averaged value of a locally defined quantity Q(r, t), indicated 
by an overbar, is defined as 

1 
Q(x, t )= -v  [vcx) J Q(r, t) d3r (t) 

In this expression V represents a reference volume with a typical dimension 
L. The volume V has a fixed position and orientation with respect to the 
position x. Throughout this paper it is assumed that the volume-averaged 
value of a certain property Q equals the macroscopically observable value 
of Q. 
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The bulk stress tensor T of a suspension of rigid particles in a 
Newtonian medium with viscosity r/is given by Batchelor, (5) 

T = -/~1 +2r/D + 1 ~ ,  f, ~v.., T ' n ( r - r i )  d2r (2) 

where T is the local stress tensor. In the expression above, the summation 
is performed over all particles i contained in the reference volume V. The 
surface of the ith particle is denoted by c~Vp.~. The vector ri indicates the 
center of the ith particle and n denotes the normal vector. The bulk rate 
of strain tensor, which is observed macroscopically, is denoted by D. 

To be able to calculate the integral, the stress distribution in the fluid 
surrounding the particles must be known. In a very dilute suspension the 
flow field and the stress distribution around a spherical particle can be 
calculated exactly. In the case of a concentrated suspension this is not 
possible. One way to overcome this difficulty is to assume that for a very 
concentrated suspension in which the particles nearly touch each other, the 
stress generated in the fluid in the interstitial holes between the particles is 
negligible compared to the stress generated in the narrow gaps separating 
the particles. The particle contribution to the stress tensor T~ thus becomes 

1 Tp=-~ ~ ~ f 3, T'n(r-ri) d2r (3) 

where Ai/ is the surface of the "gap zone" between the ith and the j th 
particle. For nearly touching particles the vector r - r i ,  indicating a point 
in the gap A~i, may be approximated by �89 r,) = �89 The hydrodynamic 
force exerted by the fluid on the surface Aii is given by 

f*J = fA~ T" n d2r (4) 

With these approximations the expression for i"p becomes 

l 

t j 

A similar expression has been derived by Goddard. 16) Combining (2) and 
(5) yields the expression for the stress tensor of a concentrated suspension 
of particles in a Newtonian fluid 

1 
= - ~ l  + 2~D + ~ - ~  y~ fijq~j (6) 

/ 
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This result can also be expressed in a different way. Since V contains many 
particles, the result of the summation in (6) is equal to N times the average 
contribution of a typical particle, 

Tv=_~l E N f 
2 V ,  ~f0q0=2"-V{~ 0iq"i/ (7J 

where the index 0 refers to the test particle, and N equals the number of 
particles contained in V. The angular brackets denote an averaging over all 
possible realizations of the surrounding particles relative to the test 
particle. If the forces can be considered as a function of the configuration 
Q = {qol, qo2 ..... q0i .... } only, then (7) can be written as 

T,, = �89 i~? ~ f,,JqoJ P(Q) dQ (8) 
i 

where n is the number density of particles and P(Q) d(Q) is the probability 
of finding the surrounding particles in a configuration Q. Only the particles 
which are relatively close to the test particle contribute to the summation 
in (8). To restrict the calculation to these particles, a volume V,, sur- 
rounding the test particle is introduced. Furthermore, a vector field f with 
the following property is introduced: 

foj = 1 6(q~ - q)f d3q (9i 

Thus (8) becomes 

- ~n t'(a) ~ 6(qoj-q)fq d3q d(Q) (tO~ 
voj 

Changing the order of integration in (10) yields 

Tp=�89 ~vofq fo ~ 6(qoj-q)P(Q)dQ d3q 
J 

The integral over Q equals the pair distribution function g(q), which 
expresses the probability density of finding a particle at a position q 
relative to the test particle. Substitution of (11) in the expression for the 
stress tensor yields 

T = -/~l + 2~/D + �89 fro g(q)fq d~q (12) 
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To be able to derive an explicit expression for the stress tensor, some 
additional assumptions have to be made with respect to the interaction 
forces and to the pair distribution function. For the special case that the 
instantaneous positions of the neighboring particles are known exactly, 
(12) reduces to 

T= -p l  + 2qD + �89 ~ fq (13) 

where the summation is performed over the nearest neighbors. 

3. C O M P A R I S O N  W I T H  THE T H E O R Y  OF FRANKEL A N D  
A C R I V O S  

Frankel and Acrivos calculated the viscosity of a concentrated suspen- 
sion of inert spheres in a Newtonian medium using a cell model. In their 
derivation they made the following assumptions: 

1. The force between two neighboring particles may be determined 
using the lubrication approximation. Furthermore, it is assumed that the 
force caused by the relative shearing motion between the particles is 
negligible compared to the force caused by the relative squeezing motion. 
This force is given by 

3r~r/a 2 
f = - - - ~  ull (14) 

where u H is the projection of the relative velocity u of the particles upon the 
line of centers, a is the radius of the particles, and h is the face-to-face 
distance between the particles. 

2. The particles movc affinely, in this case the relative velocity 
between two particles is equal to 

u = q L . e  (15) 

where L is the macroscopic velocity gradient and e is the unit vector in the 
direction of q. The projection upon the line of centers thus becomes 

unl = (u. e)e = q(L:ee)e = q(D:ee)e (16) 

3. The particles are arranged in a simple cubical packing. The orien- 
tation of the packing is aligned with the principal axes of the rate of strain 
tensor. This effectively means that a pure shearing deformation of a cubical 
arrangement of particles is considered. See Fig. 1. 
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Fig. I. A simple cubical arrangement of particles aligned with the principal axes of the rate- 
of-strain tensor. Panicles I and 4 approach the reference particle, whereas the other particles 
move away from the reference particle. 

With these assumpt ions  the stress tensor given by (12) can be 
calculated. The size of the volume V 0 is such that  only the interactions with 
the nearest neighbors are taken into account.  Within the volume V,, the 
pair  distr ibution function is zero everywhere except at the six posit ions on 
the axes of the rate of strain tensor where the probabi l i ty  of finding a 
particle is equal to one. The contr ibut ion of a particle at a position q is 
found from (14) and (16), 

3rcqa2q2 (D  :ee)ee (17) 
fq -  2h 

For  particle ' f '  in Fig.1 this expression reduces to 

fJ ql 3~la2q2 (/)~:8~fij:elel)elel 
2h 

37trla2q 2 Dij(fii* e I ) ( f i j"  e t)e~ e~ 
2h 

3ztla2q 2 _ 
. . . .  "2h D~le j e l  (18) 

In  the expression above  the vectors fii ( i =  I, 2, 3) denote  the base vectors 
of  the coordinate  system. In an analogous  way the contr ibut ions of  the 
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other neighboring particles are obtained. Adding the contributions of 
the six nearest neighbors and substitution of the result into (13) yields 
the following expression for the stress tensor: 

( 3rcna2q2~41 T = -/~1 + 2r/ lq  ] D  (19) 

It has to be noted here that the fact that a Newtonian fluid is obtained is 
a consequence of the symmetry of the particle packing with respect to the 
principal directions of the rate of strain tensor. The value of the viscosity 
depends on the type of symmetry assumed. In the limiting case of nearly 
touching particles, (19) with n = 1/q 3 reduces to 

( T = - f i l + 2 q  1+ 8 h / D  (20) 

It is convenient to express the quantity a/h in terms of the concentration 
of the suspension 

= ~ , ,: = 1 - \~,, , /  (21) 

where ~b,, is the maximum obtainable concentration. From (20) and (21) it 
can be seen that the relative viscosity of the suspension is given by 

3re 1 -~: 
r/R = 1 + - - -  (22) 

Except for the first term, which is negligible at high concentrations, this 
result is also obtained in the Frankel and Acrivos theory if one chooses a 
cubical instead of a spherical cell. Frankel and Acrivos chose a spherical 
cell since this increases the value of the constant from 3z/16 to 9/8, which 
brings the theoretical predictions in closer agreement with experiments. 
However, the choice of a spherical cell is debatable, since in this case the 
energy dissipation in the homogeneous fluid is only partially taken into 
account. Moreover, there is the problem that the experimental data are 
fitted with a value of 4,,, = 0.625, whereas the maximum obtainable 
concentration for a cubical packing is only z/6. 

If instead of a cubical arrangement the particles are assumed to be in 
a hexagonal arrangement, then the value of the relative viscosity, calculated 
from (13), is equal to 

3 x//2 zt 1-_~ (23) 
fir = 16 



1232 van den Bru le  and Jongschaap 

100 

~-- 10 

1 
0.00 

J 
0.25 0.50 0,75 

- - -  Franke] & 
kcr ivos 

.... eq, (22) 

. . . .  eq. (23) 

r 

Fig. 2. Comparison of the theoretical predictions with experiments. The solid line represents 
the empirical curve of Thomas. The Frankel and Acrivos formula is cwduated with ~,,, =: 0.625, 
whereas Eqs. (20) and (21) are ewduated with a value ~b,, =0.61. 

In this case the experiments can be fitted with a value ~b,,, = 0,61, which is 
indeed lower than the maximum obtainable concentration in a hexagonal 
packing. In Fig. 2 the theoretical predictions are compared with an 
experimental curve fit of ThomasJ 7~ It can be seen that the theoretical 
predictions are in good agreement with the experiments. 

4. LAYERED FLOW OF A CONCENTRATED SUSPENSION 

The advantage of using the expression for the stress tensor instead of 
calculating the energy dissipation becomes especially clear when the case of 
layered flow of a suspension is considered. The requirement for the stress 
tensor to be symmetrical provides the extra information needed to calculate 
the angular velocity of the particles. A layered structure conform the 
observations of Hoffman tg~ has been analyzed in a previous paperJ 8~ In the 
present paper a layered flow of a cubical arrangement of particles will be 
considered. See Fig. 3. Of course, the cubical arrangement of the particles 
will be distorted by the flow. Therefore, the value of the vi.scosity which will 
be derived here will be valid only at the moment that the packing is cubical. 
The instantaneous value of the viscosity will be a periodic function of time. 
In principle, the effective value of the viscosity can be obtained by 
averaging the viscosity over all subsequent configurations through which the 
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W 

Fig. 3. A simple cubical arrangement of particles in simple shear flow. Note that there is no 
relative velocity between particles 3 and 6 and the reference particle. 

lattice passes. (This has been done in the analysis of the layered structure 
as suggested by Hoffman.) 

Since the squeezing motion of the particles just vanishes at the instant 
that the lattice becomes cubical it is no longer permissible to neglect the 
forces which are related to the relative shearing motion of the particles and 
due to particle rotation. Using the lubrication approximation, the force due 
to the shearing motMn between two particles can be found to be 12~ 

f3 = ~ -  - 2 a + q l n  u~, --+0a (24) 

where u l  is the component of the relative velocity perpendicular to the line 
joining the centers of the particles. To calculate the force caused by the 
rotation of the particles f.., only the component of the angular velocity w 
which is perpendicular to the line joining the centers has to be taken into 
account. This component is given by 

w I = w "  (1 - - e e )  (25)  

The force f., is calculated in an analogous way to f . ,  

( h )  q•  w• (26) f,,,=~q - 2 a + q l n  w• [q•177 
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The contribution of particle 2 in Fig. 3 to the stress tensor is calculated as 
follows: 

shearing motion: ( f tq)2=-~-  - 2 a + q l n ~  3'q-6i~2 

(27) 

rotation: (f,,,q): = - T z f l ( - 2 a + q l n h )  waq , , ,  2 

In a similar way the contribution of the other particles can be found. 
Adding the results of all particles finally yields 

~ fq = xr/ - 2 a + q l n ~  2waq 0 (28) 

0 (I i) 

The angular velocity of the particles is obtained by equating the off- 
diagonal components of (28), which leads to the requircd symmetry of the 
stress tensor 

w= "}q/4a "~ ://2 (h/a --, O) (29) 

From (28) and (29) we obtain 

~ fq = n,q2 ( - 2a + q ln h ) f) (30) 

Substitution of (30)into (12) with n = l/q 3 yields for the stress tensor 

f q)} 1 " = - b l + 2 r /  l+~qq - 2 a + q l n  D (31) 

From (31) the instantaneous value of the relative viscosity r/R is found to 
be 

~/R=l+~qq - - 2 a + q l n  (32) 

Using (2t), this expression can be rewritten in terms of e,, 

fiR= 1 + z -  1 +In  (33) 
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5. A CHECK OF THE LUBRICATION A P P R O X I M A T I O N  

Nunan and Keller analyzed the effective viscosity of a periodic suspen- 
sion. Their results provide a check for the validity of the lubrication 
approximation. A simple cubical arrangement of the particles will be 
analyzed. First, the case of a pure shearing motion will be considered. (This 
is the case analyzed in Section 3.) According to Nunan and Keller, for this 
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Fig. 4. A comparison between the results of Nunan and Keller and the expressions obtained 
on the basis of the lubrication approximation. It can be seen that both for pure shear and for 
simple shear the type of asymptotic behavior is predicted well by the lubrication theory. There 
is, however, a nearly constant difference between both theories. This difference is negligible if 
the corrected results of Nunan and Keller (see footnote 3) are compared with our results. 
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flow field, the high-concentration expansion for the relative viscosity 
becomes 

3~1 27n / +  
q ,  = 4.1 + ~-~ ~ + - ~ -  In 0.25~ In ! + O(ci (34) 

According to the lubrication theory, the relative viscosity is [cf. (21)] 

37zl - c  
r/R = 1 -~ (35) 

16 r, 

Next, the case of simple shear will be considered. The instantaneous wtluc 
of the relative viscosity according to Nunan and Keller is equal to 

~t 1 
r//~= 1.63 +q-In - +  O0:) 

~4 
(36) 

Calculation of this situation in the lubrication approximation yields [cf. 
(22)] 

q R = l + ~  ; : - - 1 +  In (37) 

In Figs. 4a and 4b the results of the lubrication approximation are 
compared with the results of Numan and Keller. It can be seen that the 
type of asymptotic behavior is predicted well by the lubrication theory. 
There is, however, a nearly constant difference between the predicted values 
of the relative viscosity? 

6. C O N C L U S I O N  

In this paper a systematic derivation of the stress tensor of a 
concentrated suspension is presented. If the assumptions made by Frankel 
and Acrivos in their dissipation calculation are adopted in the theory 
presented here, it can be shown that the same relation between the 
concentration and the viscosity is obtained if a cubical cell is chosen in the 
dissipation calculation. The value of 9/8 for the constant, which is 

3 One of the referees was so kind to point out to us that there are typographical mistakes in 
Nunan and Keller's asymptotic formulas. The constants 4.1 and 1.63 in Eqs. (34) and (36) 
should be replaced by -2.1 and 0.37, respectively. In Figs. 4a and 4b it can be seen that the 
differences between the corrected results of Nunan and Keller and the results obtained on 
the basis of the lubrication approximation are negligibly small. 
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suggested by Frankel and Acrivos, is the result of an incorrect choice of a 
spherical cell. The experimental data can be fitted equally well if one 
assumes a hexagonal instead of a cubical packing. 

In calculating the case of simple shear of a cubical arrangement of 
particles the advantage of using the stress tensor instead of the energy 
dissipation becomes clear. The angular velocity of the particles is obtained 
from the requirement that the stress tensor should be symmetrical. Once 
the angular velocity is known, the value of the relative viscosity can be 
calculated. 

The lubrication approximation is checked against the results obtained 
by Nunan and Keller. It is shown that both for pure shear and simple 
shear of a cubical lattice of particles the difference between the lubrication 
approach and the asymptotic formulas of Nunan and Keller is negligibly 
small. This indicates that the hydrodynamic interaction between particles 
in a concentrated suspension may be calculated using the lubrication 
approximation. 
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