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Modeling of Concentrated Suspensions
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The constitutive equation of a concentrated suspension of spherical particles in
a Newtonian medium is derived. To this end the method of local volume
averaging is employed. To calculate the contribution of the particles to the
stress tensor it is assumed that the stress generated in the interstitial holes
between the particles is negligible compared to the stress generated in the
narrow gaps separating the particles. The use of the resulting expression is
demonstrated with two examples on a cubical arrangement of particles: pure
shear and simple shear. Furthermore, the validity of the lubrication approxima-
tion employed in this work is checked against the results derived by Nunan and
Keller for periodic suspensions.

KEY WORDS: Concentrated suspension; volume averaging; viscosity: stress
tensor; Jubrication approximation.

1. INTRODUCTION

Many models and empirical expressions have been developed to describe
the relationship between the particle concentration and the macroscopic
mechanical propertics of suspensions. The most successful theories are
limited to dilute suspensions of particles in a Newtonian medium." In this
concentration regime we do not have to take the hydrodynamic interac-
tions between the particles into account. At higher concentrations multiple-
particle interactions become important. This problem is very hard to solve.
At cven higher concentrations, where the particles nearly touch each other,
we still have multiple-particle interactions, but the hydrodynamic screening
will be effective enough to allow us to assume that the interactions are
pairwise additive. (The interaction of a reference particle with one of its
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neighbors is not disturbed by the interactions of the reference particie with
the other neighboring particles.} A successful theory in the high-concentra-
tion regime is that developed by Frankel and Acrivos.”” The basic idea
of this theory is to equate the ratio between the energy dissipation in
the suspension and in the homogeneous fluid to the relative viscosity of the
suspension. To calculate the energy dissipation in the suspension, the
packing geometry must be specified. Furthermore, in this theory it is
assumed that the viscous dissipation of energy occurs primarily in the
narrow gaps between the particles.

In this paper instead of considering the energy dissipation, an expres-
sion for the stress tensor of a concentrated suspension will be derived. In
Section 3 this expression will be used to calculate the same situation as the
one considered by Frankel and Acrivos; this is the case of a pure shearing
deformation of a cubic configuration of particles. The advantage of using
the stress tensor instead of the energy dissipation is that it provides more
information. This will be demonstrated in Section 4, where the situation
of simple shear flow will be considered. In Section § the lubrication
approximation, which is used throughout this paper to calculate the
hydrodynamic forces, will be checked against the theoretical results
obtained by Nunan and Keller®’ for periodic suspensions.

2. THE VOLUME-AVERAGED STRESS TENSOR

The macroscopic properties of a suspension are dependent only on the
microscopic structure of the system in a statistical sense. If a length scale
L is present which is small compared to the macroscopic dimensions of the
system, but at the same time is large with respect to the characteristic
length scale of the microstructure, it is possible to use the method of local
volume averaging'® to obtain the macroscopic properties of a suspension.
The volume-averaged value of a locally defined quantity Q(r, ¢), indicated
by an overbar, is defined as

~ 1
Ox =7 o ndr (1)

Vix)

In this expression V represents a reference volume with a typical dimension
L. The volume V has a fixed position and orientation with respect o the
position x. Throughout this paper it is assumed that the volume-averaged
value of a certain property Q equals the macroscopically observable value

of Q.
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The bulk stress tensor T of a suspension of rigid particles in a
Newtonian medium with viscosity # is given by Batchelor,®

T =~ﬁl+2nl_j+—;—,2f T-n(r—r,)d*r (2)

where T is the local stress tensor. In the expression above, the summation
is performed over all particles / contained in the reference volume V. The
surface of the ith particle is denoted by 0V, ,. The vector r, indicates the
center of the ith particle and n denotes the normal vector. The bulk rate
of strain tensor, which is observed macroscopically, is denoted by D.

To be able to calculate the integral, the stress distribution in the fluid
surrounding the particles must be known. In a very dilute suspension the
flow field and the stress distribution around a spherical particle can be
calculated exactly. In the case of a concentrated suspension this is not
possible. One way to overcome this difficulty is to assume that for a very
concentrated suspension in which the particles nearly touch each other, the
stress generated in the fluid in the interstitial holes between the particles is
negligible compared to the stress generated in the narrow gaps separating
the particles. The particle contribution to the stress tensor T, thus becomes

LFS]
S

Tp::—/EI_:ZJ Ten(r—r,)dr {
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where A, is the surface of the “gap zone” between the ith and the jth
particle. For nearly touching particles the vector r—r;, indicating a point
in the gap A, may be approximated by 5(r,—r,) = 1q,,. The hydrodynamic
force exerted by the fluid on the surface A4, is given by

f:j T-nd’r (4)

i
Ay

With these approximations the expression for T, becomes

- i
szﬁggfi/qu (5)

A similar expression has been derived by Goddard.!® Combining (2) and
(5) yields the expression for the stress tensor of a concentrated suspension
of particles in a Newtonian fluid

_ ~ _ I
T=—pl+2nD+51—/ZZfﬁqg (6)
P
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This result can also be expressed in a different way. Since ¥ contains many
particles, the result of the summation in (6) is equal to N times the average
contribution of a typical particle,

-1 N
szﬁ;%:f,jq,.,=2—1;<%: fol"lo/’> 7)

where the index O refers to the test particle, and N equals the number of
particles contained in V. The angular brackets denote an averaging over all
possible realizations of the surrounding particles relative to the test
particle. If the forces can be considered as a function of the configuration
0= {q0;: Qo5 Goj»-- | Only, then (7) can be written as

T,, =3n JQ Z fo90, P(Q) dQ (8}

where # is the number density of particles and P(Q) d(Q) is the probability
of finding the surrounding particles in a configuration @. Only the particles
which are relatively close to the test particle contribute to the summation
in (8). To restrict the calculation to these particles, a volume V, sur-
rounding the test particle is introduced. Furthermore, a vector field f with
the following property is introduced:

fo = [ 8@y — ) &g 9)
Thus (8) becomes
T,=in| P©Q)| T 8ay-a)fad’qdQ) (10)
(4] Vo ;
Changing the order of integration in (10) yields
T,=4in| fq| ¥ b(ay—a) P(Q)dQ d'g 0
Vo Q

The integral over Q equals the pair distribution function g{q), which
expresses the probability density of finding a particle at a position g
relative to the test particle. Substitution of (11) in the expression for the
stress tensor yields

= —p1+2:D+in| g@)fad'y (12)
[
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To be able to derive an explicit expression for the stress tensor, some
additional assumptions have to be made with respect to the interaction
forces and to the pair distribution function. For the special case that the
instantaneous positions of the neighboring particles are known exactly,
(12) reduces to

T=-p1+2yD+4in) fg (13)

where the summation is performed over the nearest neighbors.

3. COMPARISON WITH THE THEORY OF FRANKEL AND
ACRIVOS

Frankel and Acrivos calculated the viscosity of a concentrated suspen-
sion of inert spheres in a Newtonian medium using a cell model. In their
derivation they made the following assumptions:

1. The force between two neighboring particles may be determined
using the lubrication approximation. Furthermore, it is assumed that the
force caused by the relative shearing motion between the particles is
negligible compared to the force caused by the relative squeezing motion.
This force is given by

 3mnd’

==, (14)

where u, is the projection of the relative velocity u of the particles upon the
line of centers, ¢ is the radius of the particles, and h is the face-to-face
distance between the particles.

2. The particics move affinely. In this case the relative velocity
between two particles is equal to

u=¢glL-e (15)

where L is the macroscopic velocity gradient and e is the unit vector in the
direction of q. The projection upon the line of centers thus becomes

u,=(ureje=g(L:ee)e=g(D:ee)e (16)

3. The particles are arranged in a simple cubical packing. The orien-
tation of the packing is aligned with the principal axes of the rate of strain
tensor. This effectively means that a pure shearing deformation of a cubical
arrangement of particles is considered. See Fig. 1.
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Fig. 1. A simple cubical arrangement of particles aligned with the principal axes of the rate-
of-strain tensor. Particles 1 and 4 approach the reference particle, whereas the other particles
move away from the reference particle.

With these assumptions the stress tensor given by (12) can be
calculated. The size of the volume V,; is such that only the interactions with
the nearest neighbors are taken into account. Within the volume ¥V, the
pair distribution function is zero everywhere except at the six positions on
the axes of the rate of strain tensor where the probability of finding a
particle is equal to one. The contribution of a particie at a position q is
found from (14) and (16),

3nna’q® _
fqzl%%i(D:ee)ee {17}

For particle “1” in Fig.1 this expression reduces to

3nna’q® |
fiq, =_2_,;_‘]_ (Dijaiaj:ele))elel
_ 3mnd’q’

o ﬁij(ai.el)(sj'el)elel

3nna’q* ~
=——gh_qDllelel (13)

In the expression above the vectors 8, (i=1, 2, 3) denote the base vectors
of the coordinate system. In an analogous way the contributions of the
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other neighboring particles are obtained. Adding the contributions of
the six nearest neighbors and substitution of the result into (13) yields
the following expression for the stress tensor:

2.2
T=—ﬁ1+2n<1+3“""q>1‘) (19)
4h

It has to be noted here that the fact that a Newtonian fluid is obtained is
a consequence of the symmetry of the particle packing with respect to the
principal directions of the rate of strain tensor. The value of the viscosity
depends on the type of symmetry assumed. In the limiting case of nearly
touching particles, (19) with n=1/¢° reduces to

) 3
T=—pl+2n<1+{f>0 (20)

It is convenient to express the quantity a/h in terms of the concentration

of the suspension
1/1—¢ 13
-z ———F), 1;:1——(£—) (21)
h 2\ & G

where ¢, is the maximum obtainable concentration. From (20) and (21) it
can be seen that the relative viscosity of the suspension is given by

Inl—¢
”R:]_‘LET— (22)

Except for the first term, which is negligible at high concentrations, this
result is also obtained in the Frankel and Acrivos theory if one chooses a
cubical instead of a spherical cell. Frankel and Acrivos chose a spherical
cell since this increases the value of the constant from 3z/16 to 9/8, which
brings the theoretical predictions in closer agreement with experiments.
However, the choice of a spherical cell is debatable, since in this case the
energy dissipation in the homogeneous fluid is only partially taken into
account. Moreover, there is the problem that the experimental data are
fitted with a value of ¢,,=0.625, whereas the maximum obtainable
concentration for a cubical packing is only n/6.

If instead of a cubical arrangement the particles are assumed to be in
a hexagonal arrangement, then the value of the relative viscosity, calculated
from (13}, is equal to

~3 2nl—¢
T"="T1 %

(23)
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Fig. 2. Comparison of the theoretical predictions with experiments. The solid line represents
the empirical curve of Thomas. The Frankel and Acrivos formula is cvaluated with ¢, = 0.625,
whereas Eqs. (20) and (21) are evaluated with a value ¢, = 0.61.

In this case the experiments can be fitted with a value ¢, =0.61, which is
indeed lower than the maximum obtainable concentration in a hexagonal
packing. In Fig.2 the theoretical predictions are compared with an
experimental curve fit of Thomas.”” It can be seen that the theoretical
predictions are in good agreement with the experiments.

4. LAYERED FLOW OF A CONCENTRATED SUSPENSION

The advantage of using the expression for the stress tensor instead of
calculating the energy dissipation becomes especially clear when the case of
layered flow of a suspension is considered. The requirement for the stress
tensor to be symmetrical provides the extra information needed to calculate
the angular velocity of the particles. A layered structure conform the
observations of Hoffman®’ has been analyzed in a previous paper.®®’ In the
present paper a layered flow of a cubical arrangement of particles will be
considered. See Fig. 3. Of course, the cubical arrangement of the particles
will be distorted by the flow. Therefore, the value of the viscosity which will
be derived here will be valid only at the moment that the packing is cubical.
The instantaneous value of the viscosity will be a periodic function of time.
In principle, the effective value of the viscosity can be obtained by
averaging the viscosity over all subsequent configurations through which the
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Fig. 3. A simple cubical arrangement of particles in simple shear flow. Note that there is no
relative velocity between particles 3 and 6 and the reference particle.

lattice passes. {This has been done in the analysis of the layered structure
as suggested by Hoffman.)

Since the squeezing motion of the particles just vanishes at the instant
that the lattice becomes cubical it is no longer permissible to neglect the
forces which are related to the relative shearing motion of the particles and
duc to particle rotation. Using the lubrication approximation, the force due
to the shearing motion between two particles can be found to be'?!

/
fJ:Eﬁ(~2a+qlng 4, -0 (24)
2 h a

where u, is the component of the relative velocity perpendicular to the line
joining the centers of the particles. To calculate the force caused by the
rotation of the particles f,, only the component of the angular velocity w
which is perpendicular to the line joining the centers has to be taken into
account. This component is given by

w, =w-(1—ee) (25)

The force f, is calculated in an analogous way to f,

q q}("_L
f,=n —2a+¢gin-= ——
" ?’]( a+qg /1> w,da iq LI (26)
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The contribution of particic 2 in Fig. 3 to the stress tensor is caleulated as
follows:

shearing motion: (f, q)zzg—q<~2a+qln }‘{) 748, 8,
1
{27)
rotation: (f,.q),= —nn (~2a+q In %) waqd, 8,
{]

In a similar way the contribution of the other particles can be found.
Adding the results of all particles finally yields

0 9j¢°—2waq 0O
fg=mn{ —2a+¢In D 2wa 0 0 (28)
h 4
0 0 0

The angular velocity of the particles is obtained by cquating the off-

diagonal components of (28), which lcads to the required symmetry of the
stress tensor

w=y¢q/d4a=7/2 (hja —0) (29}

From (28) and (29) we obtain
qu=nnq2(—2a+qln%>f) (30)
Substitution of (30) into (12) with n=1/4* yields for the siress tensor

- _ n AN\ =
= - |- - 1
T p1+2n{1+4q< 2a+qlnh>}D {31)

From (31) the instantaneous value of the relative viscosity 5 is found to
be

T q ,
nR=l+Z(;(~2a+qan) {32)

Using (21), this expression can be rewritten in terms of ¢,

qR=1+f(e—1+1nl) (33)
4 I
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5. A CHECK OF THE LUBRICATION APPROXIMATION

Nunan and Keller analyzed the effective viscosity of a periodic suspen-
sion. Their results provide a check for the validity of the lubrication
approximation. A simple cubical arrangement of the particles will be
analyzed. First, the case of a pure shearing motion will be considered. (This
is the case analyzed in Section 3.} According to Nunan and Keller, for this

(a) 100
a: pure shear
— N & K
« ~ == Luor. Appr.
-~
— Corr. N & K
1>
8 —
(b) b: simple shear
7
— N & K
- — - Lubr. Appr.
~—= Corr. N & K
1k

c.co 0.05 0.10 Q.15

Fig. 4. A comparison between the results of Nunan and Keller and the expressions obtained
on the basis of the lubrication approximation. It can be seen that both for pure shear and for
simple shear the type of asymptotic behavior is predicted well by the lubrication theory. There
is, however, a nearly constant difference between both theories. This difference is negligible if
the corrected results of Nunan and Keller (see footnote 3) are compared with our results.
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flow field, the high-concentration expansion for the relative viscosity
becomes

31 20 |
ne=4.1+ 12 :m +0.25In- ~+ 0L} (34)

According to the lubrication theory, the relative viscosity is [cf. (21}]

(35}

Next, the case of simple shear will be considered. The instantancous valuc
of the relative viscosity according to Nunan and Kelier is equal to

n,<—163+ In +()() {36)

Calculation of this situation in the lubrication approximation yields fcf.

(22)]
T 1
11R=]+—<l:-1+ln~) {37)
4 &

In Figs. 4a and 4b the results of the lubrication approximation are
compared with the results of Numan and Keller. It can be seen that the
type of asymptotic behavior is predicted well by the lubrication theory.
There is, however, a nearly constant difference between the predicted values
of the relative viscosity.?

6. CONCLUSION

In this paper a systematic derivation of the stress tensor of a
concentrated suspension is presented. If the assumptions made by Frankei
and Acrivos in their dissipation calculation are adopted in the theory
presented here, it can be shown that the same relation between the
concentration and the viscosity is obtained if a cubical cell is chosen in the
dissipation calculation. The value of 9/8 for the constant, which is

3 One of the referees was so kind to point out to us that there are typographical mistakes in
Nunan and Keller’s asymptotic formulas. The constants 4.1 and 1.63 in Eqgs. (34} and (36)
should be replaced by —2.1 and 0.37, respectively. In Figs. 4a and 4b it can be seen that the
differences between the corrected results of Nunan and Keller and the results obtained on
the basis of the lubrication approximation are negligibly small.
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suggested by Frankel and Acrivos, is the result of an incorrect choice of a
spherical cell. The experimental data can be fitted equally well if one
assumes a hexagonal instead of a cubical packing.

In calculating the case of simple shear of a cubical arrangement of
particles the advantage of using the stress tensor instead of the energy
dissipation becomes clear. The angular velocity of the particles is obtained
from the requirement that the stress tensor should be symmetrical. Once
the angular velocity is known, the value of the relative viscosity can be
calculated.

The iubrication approximation is checked against the results obtained
by Nunan and Keller. It is shown that both for pure shear and simple
shear of a cubical lattice of particles the difference between the lubrication
approach and the asymptotic formulas of Nunan and Keller is negligibly
small. This indicates that the hydrodynamic interaction between particles
in a concentrated suspension may be calculated using the lubrication
approximation.
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